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Abstract. The steady-state particle-size distribution is examined, resulting from a breakage
process with a maximum stable size. If the latter is much smaller than the characteristic
size of the initial distribution, the steady-state distribution forcontinuousbreakage kernels is
independent of the breakage frequency and of initial conditions and is shown to be a simple
function of the breakage kernel. Fordiscontinuouskernels, the steady-state size distribution is
always dependent on the initial conditions.

1. Introduction

Breakage of particulate matter into smaller fragments is encountered in many natural
phenomena and technological processes. For instance at the geological time scale, a
fragmentation process is apparently responsible for the distribution of particulate material
on the earth surface. Technological aspects of fragmentation concern mineral processing,
polymer degradation and break-up of liquid droplets or air bubbles. A rather extensive
account for processes based on fragmentation is given in the review by Redner [1]. The
term breakage is considered synonymous to fragmentation and used mainly in fluid processes
while fragmentation refers to solids.

It was already recognized in the early studies on fragmentation that a critical particle size
Xm may exist below which there is no further break-up. This is widely accepted for certain
systems such as the turbulent flow of liquid–liquid dispersions [2]; indeed it is considered
that the turbulent flow field cannot cause breakage of droplets below a certain size related
to the turbulent eddy structure. On the other hand, forces acting on large droplets (of size
greater thanXm) can lead to daughter particles much smaller thanXm or even of the smallest
eddy of the turbulent flow. One may call this model of limited breakage,type-I breakage.
There is another fundamentally different model of limited breakage; it is relevant to solid
and polymer processes and is characterized by a critical size below which particles cannot
exist in the system. This model of limited breakage may be calledtype-II breakage[3].
It is clear that type-I breakage imposes a minimum size on parent particles while type-II
breakage imposes a minimum size on daughter particles. It is noted that the small cut-off
size given by Redner [1] does not actually lead to a limited breakage mechanism because
that restriction is on the ratio of daughter to parent particles and not on the absolute size of
either one of them. An obvious difference between continuous and limited breakage is that
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in the former the PSD keeps changing with time, while in the latter the process results in
a steady state.

The existence of a critical size for type-I breakage implies that the particle-size
distribution reaches a steady state where all the particles are smaller than this critical size.
If only breakage takes place, this steady state may be calledstatic, in the sense that particles
smaller than the critical size remain unchanged, and additionally it may depend in principle
on the earlier states of the system. By contrast, adynamic steady state resulting from a
combination of two or more competing mechanisms, e.g. breakage and coalescence [4]. is
characterized by a ceaseless alteration of particles. The dynamic steady state is independent
of earlier states of the system and thus of the initial conditions.

Although there is an extensive literature on the evaluation of the critical size for the
type-I limited breakage as a function of the physicochemical characteristics of the system,
there are only a few solutions, mainly numerical, of the mathematical problem [5, 6]. On the
other hand analytical solutions for the type-II limited breakage have been recently given [3]
for the case of binary random breakage using the method of Laplace transform. The object
of this work is to study analytically the steady-state PSD for type-I limited breakage.

2. Mathematical formulation

The evolution of size distribution of dispersed particles for type-I limited breakage is given
by

df ′(x ′, t)
dt

=
∫ ∞
x ′
v′(y ′)p′(x ′, y ′)b′(y ′)f ′(y ′, t)dy ′ − b′(x ′)f ′(x ′, t) x ′ > Xm (1a)

df ′(x ′, t)
dt

=
∫ ∞
Xm

v′(y ′)p′(x ′, y ′)b′(y ′)f ′(y ′, t)dy ′ x ′ < Xm (1b)

where the symbols involved have the following meaning:t time,x ′ particle volume,f (x ′, t)
particle number density distribution,b′(x ′) breakage probability of particles of volume
x ′, v′(y ′)p′(x ′, y ′) distribution of particles of volumex ′ resulting from the break-up of a
particle of volumey ′, v′(y ′) number of particles resulting from the break-up of a particle
of volumey ′.

Let f ′0(x
′) = f ′(x ′, 0) be the initial distribution. The total volume concentration, the

total number concentration and the mean size of the initial distribution are, respectively:

M =
∫ ∞

0
xf ′0(x) dx

N0 =
∫ ∞

0
f ′0(x) dx

x0 = M

N0
.

The functions and variables already introduced can be expressed in dimensionless form, as
follows:

x = x ′

x0
y = y ′

x0
τ = b′(x0)t xm = Xm

x0

b(x) = b′(x)
b′(x0)

f (x, τ ) = x0f
′(x ′, t)
N0

p(x, y) = x0p
′(x ′, y ′) v(y) = v′(y ′)



Letter to the Editor L687

and equations 1(a) and (1b) can be written as

df (x, τ )

dτ
=
∫ ∞
x

v(y)p(x, y)b(y)f (y, τ )dy − b(x)f (x, τ ) x > xm (2a)

df (x, τ )

dτ
=
∫ ∞
xm

v(y)p(x, y)b(y)f (y, τ )dy x < xm. (2b)

There is a large number of solutions to the above problem available for the casexm = 0.
For certain simple forms of functionsb(x) andv(y)p(x, y) analytical solutions exist [7, 8].
Similarity tranformations [9] can be used if the above functions satisfy certain requirements.
Finally, for a general form of kernels, there are specialized numerical methods [10] and
Monte Carlo simulations [11]. Because of the linearity of the problem the solution
for an arbitrary initial distribution can be obtained from the superposition of solutions
for monodisperse initial distributions. The general solution to the above problem for
monodisperse initial distribution is:
for x < xm

f (x, τ ) =
∞∑
i=0

A(i)(x)
τ i+1

(i + 1)!
+ δ(x − 1)e−τ (3a)

for x > xm

f (x, τ ) =
∞∑
i=0

∫ 1

xm

A(x, y)A(i)(y) dy
τ i+2

(i + 2)!
+ A(x, 1)e−τ (3b)

where

Ai+1(x) =
∫ 1

x

A(x, y)A(i)(y) dy + (1− b(x))A(i)(x) i = 0, 1, 2 . . .∞

A(x, y) = A(0)(x, y) = b(y)v(y)p(x, y).
(3c)

3. Solutions for the steady state

The steady-state distribution can be obtained from the above series by substitutingτ = ∞.
Since this method is quite impractical computationally, one may proceed in a different way.

The following function is introduced:

L(x) = b(x)
∫ ∞

0
f (x, τ )dτ (4)

which represents the total number of particles with volumex, that suffer breakage during
the entire process. This transformation essentially eliminates the breakage frequency.

Integrating equations (2a), and (2b) from τ = 0 to∞, one obtains:

−f0(x) =
∫ ∞
x

v(y)p(x, y)L(y)dy − L(x) x > xm (5a)

fs(x) =
∫ ∞
xm

v(y)p(x, y)L(y)dy + f0(x) x < xm (5b)

wherefs(x) is the dimensionless steady-state particle-size distribution. The functionL(x)

depends onv(y)p(x, y) andf0(x), whereas the steady-state size distributionfs(x) depends
additionally onxm.

One may assume that the breakage kernel is independent of the absolute parent-particle
size but that depends only on the ratiox/y. Volume conservation considerations imply
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that the kernel has the formv(y)p(x, y) = ϕ(x/y)/y. This type of kernel has been
used extensively in the literature from prototype models for the solution of the breakage
equation [8] to empirical expressions for fitting experimental data [12].

Nambiar et al [5] solved numerically the dynamic equation and found the steady-
state size distribution in the limit of large times. Kostoglouet al [6] solved numerically
equation (5) to obtain directly the steady-state size distribution. Both works resulted in the
conclusion that forxm � 1 the steady-state size distribution (called ‘limiting’) is independent
of the initial size distributionf0(x). Thus, there is a direct relationship between the steady-
state size distribution and the breakage kernel. Exploitation of such a relationship is the
specific objective of this work. To proceed one should modify the nondimensionalization
of particle volume and of steady-state distribution to render it independent of the initial
distribution:

x̄ = x

xm
f̄ (x̄) = X2

mf
′(x ′)
M

= x2
mf (x). (6)

Because of the linearity of the problem and the fact that one expects that the ‘limiting’
steady state is independent of the initial conditions, it is not restrictive to assume that
the initial distribution is monodisperseδ(x − 1). Using the above and the new function
q(x) = L(x)− δ(x − 1) equations (5) are modified as:

ϕ(x)+
∫ 1

x

1

y
ϕ(x/y)q(y) dy − q(x) = 0 (7a)

f̄s(x̄) = x2
m

∫ 1

xm

1

y
ϕ

(
x̄

y
xm

)
q(y) dy + x2

mb(x̄xm). (7b)

One is interested in the limiting steady-state distributionfsl(x̄) that can be computed
from equation (7b) in the limit xm→ 0. A particular solution to the above problem is given
in [6] in the form of an infinite series containing derivatives of the kernel of all orders. This
solution has obvious restrictions but it is correct for the few kernels for which the series
converges. A general solution is given here, valid for all cases where a steady state exists.
Using the new variable of integrationz = x̄

y
xm in equation (7b), the following relation is

obtained:

f̄sl(x̄) = lim
xm→0

x2
m

∫ x̄

0

1

z
ϕ(z)q

(
x̄

z
xm

)
dz. (8)

To proceed with the above equation the asymptotic behaviour ofq(x) as x → 0 must be
known. It is interesting that only the asymptotic behaviour ofq(x) is required for evaluating
the limiting steady state and not the entire function defined in the interval [0, 1]. To find
the asymptotic behaviour ofq(x), the following procedure is adopted. Equation (1) is
multiplied by xs and then integrated with respect tox from x = 0 to ∞. After some
algebra the following relation results:

Q(s) = 8(s)

1−8(s) (9)

where

Q(s) =
∫ 1

0
xsq(x) dx 8(s) =

∫ 1

0
xsϕ(x) dx.

The functionsQ(s) and8(s) are related to the Mellin transforms of the functionsq(x)
andϕ(x) respectively. Function8(s) is a purely monotonic (decreasing) function ofs for
s > 0. It takes the valuesv/2 and 1 ats = 0 and 1, and tends to zero ass tends to infinity.
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FunctionQ(s) is by definition(q(x) > 0) positive. According to equation (9)Q(s) takes
positive values fors > 1 and diverges fors = 1. For s < 1 it takes negative values with
no physical meaning. The above behaviour clearly suggests thatq(x) for x → 0 behaves
asymptotically like the power functionx−2. If A is a constant (dependent onϕ(x)) one
may substitute forx → 0, q(x) = Ax−2. Although this procedure is not mathematically
precise, it is supported by the available exact solutions. Furthermore, similar considerations
have been extensively used in the scaling theory of fragmentation [13].

The above statement is not valid for discontinuous kernels. The functionq(x) is also
discontinuous and in the limit of smallx acquires a fractal-like structure with increasingly
closely spaced discontinuities. Nevertheless, equation (9) also holds in this case but the
asymptotic behaviour is observed only in an integral sense. For example, for the equal-size
binary breakage(ϕ(x) = δ(x − 1

2)) the asymptotic relation is not valid because there exist
values ofx arbitrarily close to zero whereq(x) = 0; it is valid, however, for the mean value
of q(x) over finite regions ofx. The above behaviour ofq(x) suggest that a limiting steady
state does not exist for discontinuous breakage kernels. In this case the steady-state size
distribution depends on the initial distribution. This result is confirmed using the available
exact solutions for the steady state [6].

Substituting the asymptotic relation forq(x) in equation (8) and taking the limit, the
following relation is obtained:

f̄s(x̄) = A

x̄2

∫ x̄

0
zϕ(z) dz. (10)

The parameterA can be evaluated, from the requirement of the total volume conservation∫ 1
0 x̄f̄s(x̄) dx̄ = 1 asA = −(∫ 1

0 z ln(z)ϕ(z) dz)−1 It is worth noting that the steady-state
distribution is independent of the breakage rateb(x). The resulting equation (10) is
very important for the so-called inversion problem; i.e. from a measured steady-state size
distribution f̄s(x̄), it is very easy to determine the governing breakage kernel from the
relation:

ϕ(z) = 1

zf̄s(1)

d(z2f̄s(z))

dz
. (11)

This inversion formula is similar to that for determining the bubble-size distribution from
a measured chord-length distribution. In both problems the result is obtained from the first
derivative of an experimentally determined function. An extensive analysis for the inversion
of such problems from noisy experimental data is given in [14].

The simple form of equation (10) allows analytical solutions for a fairly general class
of breakage kernels. Two such very simple cases are analysed, which are representative
forms of binary breakage kernels. They are a subset of the general kernels for multiple
breakage given in [15]. These two forms are simple substitutes for the two widely used
kernels (for binary breakage) in practical cases, i.e. the normal distribution kernel and the
U-shaped one.

(i) Product kernel(m = 0, 1, 2 . . .)

ϕ(z) = 2(2m+ 1)!

(m!)2
zm(1− z)m. (12a)

This kernel is uniform form = 0. For other values ofm it has a form similar to that of the
well known normal distribution-type kernel. The exponentm is related to the inverse of
the standard deviation of the normal-shaped kernel. In the limitm→∞ this kernel tends
to the equal-size breakage kernel [16].
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Figure 1. Breakage kernel and ‘limiting’ steady-state size distribution for product and sum
kernels(m = 8).

The limiting steady-state size distribution for this kernel is given as:

f̄sl(z) =
( i=m∑
i=0

(−1)im!

i!(m− i)!(m+ i + 2)2

)−1 i=m∑
i=0

(−1)im!

i!(m− i)(m+ i + 2)
zm+i . (12b)

(ii) Sum kernel(m = 1, 2, 3 . . .)

ϕ(z) = (m+ 1)[zm + (1− z)m]. (13a)

This kernel is uniform form = 1. For other values ofm it has a U-shaped form. Asm
increases the kernel tends to represent more ‘errosive’ behaviour, i.e. preference for daughter
particles with very different sizes. The limiting steady-state size distribution for this kernel
is given as:

f̄sl(z) =
(

1

(m+ 2)2
+

m∑
i=0

(−1)im!

i!(m− i)!(i + 2)2

)−1

× 1

z2

(
xm+2+ (1− x)m+2

m+ 2
− (1− x)

m+1

m+ 1
+ 1

(m+ 1)(m+ 2)

)
. (13b)

In figure 1 the two kernels (product and sum) and the respective limiting steady-state size
distributions are shown form = 8. In general, the steady-state distribution retains the
qualitative features of the respective breakage kernel.

4. Conclusion

An explicit relation between the steady-state particle-size distribution and a homogeneous
breakage kernel is found for particles undergoing breakage with a maximum stable size
much smaller than the initial particle size. The only restriction on the existence of this
‘limiting’ steady state is that the kernel must be continuous. This relationship greatly
simplifies the inverse problem of determining the breakage kernel from an experimentally
obtained steady-state distribution.
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